miniNVA PRO Lite 使用说明书

200M 便携式 USB 矢量网络分析仪

第1页,共38页

一、miniVNA PRO Lite 简介

感谢您购买和使用 miniVNA PRO Lite 矢量网络分析仪,使用前请您仔细阅读本操作说明书,并按相关指导进行软件安装和使用,谢谢!

miniVNA PRO Lite 是一款便携式 USB 矢量网络分析仪,采用 CNC 铝外壳,增强高频抗干扰能力,使测量更精确。使用专业的 VNA-PC 软件进行数据分析处理,测量范围从 100KHz~200MHz,支持 S11、S21 的 S 参数测量。

miniVNA PRO Lite 带软件开路、短路、负载、直通校准功能,测试结 果更准确(相应的校准器件需用户自行准备或购买);软件支持多格式数 据导出包括 JPEG、Excel、ZPlots、S1P、S2P、PDF等;友好的用户界面, 支持 Windows、Linux、Mac 系统。

miniVNA PRO Lite 配套软件中集成了简易的信号发生器功能,用户 可以从 100KHz~200M 自行设定频率、支持双通道输出、支持信号衰减设置、 支持双信号的相位差设置,用户在产品调试中可简单应用,其中信号发生 器功能时 DUT 和 DET 均可输出信号(I 输出是 DUT 口,Q 输出是 DET 口)。

miniVNA PRO Lite 超迷你尺寸 8*8*1.7 厘米,非常便于外出携带和使用,适合广大从事电子行业的射频产品研发人员、现场工程师、硬件工程师、软件工程师、科研人员、生产测试人员、出入货检验人员、现场销售人员以及广大高校师生及射频爱好者。

二、主要特点

频率范围: 100KHz~200MHz

频率步进:1Hz

端口配置:双端口

S参数: 支持 S11 和 S21

动态范围: 传输 90dB/反射 50dB

阻抗范围: 1~1000 欧姆

输出功率: 0dB@100MHz

支持双通道信号发生器输出

全相位测量,并集成史密斯图

带软件开路、短路、负载、直通校准功能,测试结果更准确

支持多格式数据导出(JPEG, Excel, ZPlot, S2P, PDF)

友好的用户界面,支持 Windows、Linux、Mac 系统

RF 端口为 SMA 连接器(均为外螺内孔)

USB 供电

超迷你尺寸 8*8*1.7 厘米, 方便携带(超轻超薄)

三、JAVA 软件安装

miniVNA PRO Lite 矢量网络分析仪需在 JAVA 环境下使用,因此需要 在电脑上预装 7.0 以上版本 JAVA 软件,请根据实际情况选用 WINDOWS/Linux/MAC 系统并区分 32/64 位安装 7u80 版本的 JAVA 软件。如 果用户电脑已安装 JAVA7.0 以上版本,可以不再安装;如果用户需要安装 7u80 以上的 JAVA,请自行到 Oracle 公司官网下载对应版本。

以WIN7(64位)系统为例安装7u80的JAVA版本,下载对应的JAVA软件 jre-7u80-windows-x64.exe,下载完成后,双击安装文件

Java 安装程序 - 欢迎使用	×
الله المعالم المعالم المعالم المحال محال	ORACLE
欢迎使用 Ja	va
Java.通过安全可靠的方式引领您步入由精彩的 J 案到有用的实用程序和娱乐程序, Java 使;	ava 内容构成的世界。从商业解决方 您的 Internet 体验生动有趣。
注:在我们的安装过程中,不会收集 单击此处 了解有关我们所收集内部	个人信息。 容的详细信息。
单击 "安装" 以接受 许可协议 并	并立即安装 Java。
□ 更改目标文件夹	取消 安装(!)>

点击上图:"安装"

点击上图:"关闭"(不用理会弹出的验证 JAVA 版本页面,直接关闭即可)

四、安装驱动程序,将miniVNA PRO Lite 分析仪用 USB 线与电脑连接

安装驱动软件前,请用户同样根据 WINDOWS\Linux\MAC 系统并区分 32\64 位下载相应的驱动程序(本示例 CDM v2.12.12 WHQL Certified.zip), 并解压到用户选择的相应目录中。

找到新的硬件向导	
	欢迎使用找到新硬件向导
	这个向导帮助您安装软件:
I THE	FT230X Basic VART
	如果您的硬件带有安装 CD 或软盘,请现在将 其插入。
	您期望向导做什么?
I Hilling	
State of the local division of the local div	
	安继续,谓半击"下"───。
	(上一步(2)下一步(2)) 取消

选择上图"从列表或指定位置安装(高级)"并点击"下一步"

到新的硬件向导	
请选择您的搜索	和安装选项。
● 症这些位置使用下列的到的最佳驱用下列的量子。	上搜索最佳驱动程序(S)。 复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找 动程序。 可移动媒体(软盘、CD-ROM)(M) 复中包括这个位置(n).
A: \	★ CitaZ + III (2). 浏览(B)
○不要搜索。 选择这个选 动程序与您	我要自己选择要安装的驱动程序 @)。 项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱 的硬件最匹配。
	(<上一步(B))下一步(B) >

点击上图"浏览"并选择相应的目录

第6页,共38页

选择包含您	的硬件的驱动程序的文件夹	
	🛅 tinyvna 🖃 🦳 driver	<u> </u>
	☐ ☐ xp ☐ am d64 ☐ i386	
		~

点击上图"确定"

找到新的硬件向导
请选择您的搜索和安装选项。
 ● 在这些位置上搜索最佳驱动程序(⑤)。 使用下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找到的最佳驱动程序。 ■ 搜索可移动媒体(软盘、CD-ROM)(例) ● 在搜索中包括这个位置(①): ■ \tinyyna\driver\sp ② 在搜索。我要自己选择要安装的驱动程序(Q)。 选择这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱动程序与您的硬件最匹配。
< 上一步 (B) 下一步 (B) > 取消

点击上图"下一步"

硬件安装	ŧ.
1	正在为此硬件安装的软件: VSB Serial Converter 没有通过 Windows 徽标测试,无法验证它同 Windows XP 的相容性。(<u>告诉我为什么这个测试很重要。</u>) 继续安装此软件会立即或在以后使系统变得不稳定。 Bicrosoft 建议您现在停止此安装,并同硬件供应商 联系,以获得通过 Windows 徵标测试的软件。
	仍然继续 (2) 停止安装 (3)

点击上图"仍然继续"

第7页,共38页

找到新的硬件向导	
	完成找到新硬件向导
	该向导已经完成了下列设备的软件安装:
	Converter
	要关闭向导,请单击"完成"。
	< 上一步 (B) 完成 取消

点击上图"完成"

找到新的硬件向导	
	欢迎使用找到新硬件向导
	这个向导帮助您安装软件:
	USB Serial Port
	如果您的硬件带有安装 CD 或软盘,请现在将 其插入。
	您期望向导做什么?
	● 自动安装软件(推荐)(I)
	○从列表或指定位置安装(高级)(2)
	要继续,请单击"下一步"。
	< 上一步 (B) 下一步 (B) > 取消

选择上图"从列表或指定位置安装(高级)"并"下一步"

找到新的硬件向导
请选择您的搜索和安装选项。
 ● <u>花这些位置上搜索最佳驱动程序(S)。</u> 使用下列的复选框限制或扩展默认搜索,包括本机路径和可移动媒体。会安装找到的最佳驱动程序。 ● 搜索可移动媒体(软盘、CD-ROM)(M) ● 在搜索中包括这个位置(Q): D:\tinyvna\xp 》 浏览(B) ● 不要搜索。我要自己选择要安装的驱动程序(Q)。 选择这个选项以便从列表中选择设备驱动程序。Windows 不能保证您所选择的驱动程序与您的硬件最匹配。
〈上一步 (8) 下一步 (8) 〉 取消

点击上图"浏览"并选择相应的目录

点击上图"仍然继续"

找到新的硬件向导	
	完成找到新硬件向导
	该向导已经完成了下列设备的软件安装:
	USB Serial Port
	要关闭向导,请单击"完成"。
	< 上一步 (B) 完成 取消

点击上图"完成"

五、设备端口查询(请将 miniVNA PRO Lite 分析仪用 USB 线与电脑连接)

点击"我的电脑"--右键--"设备"(不同的 WINDOWS 本操作不同), 在下图的设备管理器界面,检查"端口(COM 和 LPT)"是否有 USB Serial Port(COM**),如果有则驱动程序安装完成。(本示例中, COM 口为 COM204)

六、软件运行和串口设备

下载 vna. 3. 1. 9. cn. jar 到用户选择的目录中, 双击 vna. 3. 1. 9. cn. jar (执行 vna. 3. 1. 9. cn. jar 时出现文件解压缩, 请参看说明书的常见问题1) 注: 软件自动生成的文件夹、参数设置、校准文件、导出文件等会保存在 目录 C:\用户\Admininstrator 的"vna. 3. 1"文件夹中。

WM VNA 版本3.1.9									
文件 工具 校准 导出 分析	析仪预置								帮助
🔮 (1) 🕖 🖶 🎼 🖬 🛛 CAL	🔗 🖂 🖻 🔂		4						'll 🛠 📖
R. (48) ▼ 区 自动域数 ④ 5.00 3.50 3.50 3.50 3.50 3.50 3.50 40.5	idth=969 -Heig	ht=343		orange D	議就失敗 沒有当前機成的可用於准数調。 请做於理想作型功能效率文件。 通定			RP (*) 180.00 182.00 144.00 126.00 106.00 00.00 72.00 54.00 38.00 15.00	陳平 开始 (Hz) 100 培電 (Hz) 9,999,999 短賀 (Hz) Start Stop
-100.00								0.00	
频率(Hz)	RL (dB)	RP (°)	Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	SWR		000
м									模式
1								$\Box \sqrt{M} {}^{\mathbb{V}_{N_{E}}}$	·
Δ									放大
2								$\Box \sqrt{M_M} M_{\rm Hz}$	
3								□ √M ™	速度;
4								$\Box \Lambda_{M} P^{\mu}$	-8 -4 0 4 8
VNA 版本 3.1.9/2016-07-15 准备	≇… © micro-lab 2	016		Sample/	DummySamplePo	al.			

点击上图 "确定",如下图(注: 在反射或传输测量模式,如无对应的校 准数据,软件禁止相应的测量,请参看说明书中的设备校准及测试示例)

VNA 版本3.1.9				
文件工具校准律 导出分析仪预置				帮助
🎰 YV 🗋 분 n 🛛 🕸 🖉 🖉 🖉 🖉				·U 🛠 🖽
信息 RL (dB) 目动缩放 王书 法结 C 10 17			RP (°) 🔻	频率
重新建设 Shift-F5			180.00	开始 (Hz) 100
- <u>5.50</u> 单次扫描 F12			162.00	结束 (Hz) 9,999,999,999
重复扫描 F11			144.00	
				预置 (Hz)
28.60			128.00	Start Stop
-37.00			108.00	
47.50 Diagramm-width=969 -Height=343			90.00	
-58.00			72.00	
			1.000	
-68.50			54.00	
-79.00			36.00	
-89.50			18.00	
-100.00			0.00	000
频率(Hz) RL (dB) RP (°) 3	Z (Ω) Rs (Ω))	Ks (Ω) Theta	SWR	
M				模式
1			$\Box \sqrt{M_{M_{E}}}$	•
Δ				放大
2			U V M	□ 重复扫描 单次扫描
3			□ √ _M ^τ υ _{Ng}	
4			□ √ [™] [™]	-8 -4 0 4 8
设置分析仪和准门	Sample	uncal.		
	- sniple			

第12页,共38页

选择上图软件工具栏"分析仪"点击"设置",弹出下图对话框

WMA VNA 版本3.1.9				
文件 工具 校准 导出 分析仪 预置				帮助
소·(?)	ø			11 🛠 📖
RL (dB) VNA - 设备选择		EX	RP (°) 🔻	频率
5.00 设备列表 可用端口列表			180.00	开始 (Hz) 100
-5.50 miniVNA Tiny COM204			162.00	结束 (Hz) 9,999,999,999
-16.00 miniVNA-pro			144.00	25. ⁹ (山)
-28.50			128.00	
-27.00			108.00	Start Stop
5.00			100.00	
-47.50			90.00	
-58.00			72.00	
-68.50			54.00	
79.00			36.00	
BOXX NRCP	2001	田代		
-89,50	46.40	32271	18.00	
-100.00			0.00	000
频率(Hz) RL (dB) RP (°)	Z (Ω) Rs (Ω)	Xs (Ω) Theta	SWR	
M				模式
1			□ √ _M ™ _t	
Δ				放大
2				
3			□ √ _M ™ _{NE}	· · · · · · · · · · · · · · · · · · ·
4			□ √ _M ∿ _N	-8 -4 0 4 8

选择上图左列 miniVNA PRO, 右列选择 COM**, 本示例 COM204, 并点"测试"

MA VNA 版本3.1.9									
文件工具 校准 与	出分析仪预置								帮
🔹 🖤 🕖 🔒 👫 f	CAL 🔗 🔤								11 🛠 🛛
RL (dB)	- 设备选择					—		RP (°) 👻	频率
10.00 设备列	表可用端	口列表						180.00	开始 (Hz) 100,000
.00 miniV	NA Tiny COM	204						144.00	结束 (Hz) 200,000,000
10.00 miniV	NA-pro							108.00	2500 (1-)
20.00 Samp	le							72.00	预查 (HZ)
20.00								26.00	Start Stop
00.00								00.00	
40.00								0.00	
- <u>50.00</u> 请选择	治析仪类型 请选择	正确的端口						-36.00	
60.00 状态-								-72.00	
70.00	分析仪通信正常,请按	"更新"按钮完成端口]设置.					-108.00	
R7:H		आहन		#PRh		面新			
.80.00		00.00		10.00		323/1		-144.00	
-90.00								-180.00	000
频率(Hz)	RL (dB)	RP (°)	Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	SWR		
м									模式
1								□ √ _M [™] NE	
Δ									放大
2								$\Box { \!$	
								$\Box ~ {\cal I}_M ~ {}^{\mathbb{V}}_{\mathbb{M}_E}$	速度:
3									.9 .4 0 4 9
3								∩ N ^M ∩ ^M	-0 -4 0 4 0

串口测试通过后,请点上图右下角"更新",弹出下图对话框

校准数据读明	取失败	×
没 请	有当前模式的可用校准数据。 做校准操作或加载校准文件。 确定	

点击上图"确定",即可以使用本软件(使用并校准的设备不会出现上图) 注:请参看说明书中的设备校准及测试示例。

第13页,共38页

七、软件界面常用功能介绍(软件版本 vna. 3.1.9. cn 为例)

WM VNA 版本3.1.9									
文件 工具 校准 导出 分	分析仪 预置								帮助
📤 👔 🕖 🚠 👯 👩 🗠	ı 🔗 🔤 📾 🔂 [. 🗷 🖻 🖄 🥠							川 🛠 🎟
RL (dB) 🔽 🗹 自动缩放	0 X #	0					RP	(°) -	频率
-0.78		_						179.78	开始 (Hz) 100,000
-1.33								143.84	结束 (Hz) 200,000,000
<u>-1.89</u>								107.90	· 荀昱 (Hz)
-2.45								71.96	Start Ston
-3.01								36.02	start stop
-3.56								0.08	
442								25.00	
-4.12								-30.80	
-4.68								-71.80	
-5.24								-107.74	
-5.79								-143.68	
-6.35								-179.62	
频率(Hz)	RL (dB)	RP (°)	Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	SWR		
M] [模式
1 13,890,263	-6.35	151.10	21.7	18.5	11.2	31.2	2.86:1	🗹 v 🙀 🐂	反射
Δ									放大
2								$\Box \sqrt{M} \mathcal{M}_{H_{\Sigma}}$	
3									速度:
4								□ 4 ^M e ^M	-8 -4 0 4 8
2,000 样品扫描 5s				miniVNA-pro/COM2	04 2000/	0 REFL_r	niniVNA-pro.cal		

菜单栏功能

[文件]包含以下几项内容

设置: 设置当前设备默认设置, 一般无需设置

范围: 设置当前设备测量参数的最大最小绝对值, 一般无需设置

颜色:设置软件显示界面范围,标记,图表的对应颜色,用户可以根据自

身喜好,进行修改,用户也可以点其中的[默认],恢复初始状态。

语言: 在弹出的对话框中选择所需语言种类, 点 OK 并重启软件。

退出:关闭软件

[工具] 包含以下几项内容

分析: 对导出数据进行比较, 可以分别导入两组数据进行比较

莫尔斯发射:莫尔斯电码发射,一般不使用

电缆长度:将目标电缆用 SMA 接头接在 DUT 口。有三种测量方式,包括根据已知电缆型号和参数,测量目标电缆长度;根据已知电缆长度,测量目

第14页,共38页

标电缆速度因子; 根据已知电缆的速度因子, 测量目标电缆长度;

电缆损耗:将目标电缆用 SMA 接头接在 DUT 口,直接测量目标电缆在不同频 率下的损耗情况

快速傅氏变换:快速傅氏变换,一般不使用

固件下载:用于设备固件升级,miniVNA PRO Lite 目前不支持该功能 信号发生器:简易双通道信号发生器功能,频率从100KHz~200MHz 的信号 调度计划:不使用

多调:不使用

PAD 计算器: 可以做简单 Π 型和 T 型阻抗匹配计算

[校准] 包含以下几项内容

频率:此功能一般禁止操作,需有高性能频谱仪时才可以用于校准内部信 号发生器的频率,如果设置错误,可以关闭软件,打开目录C:\用户

\Admininstrator, 找到文件夹 vna. 3.1, 直接删除 vna. 3.1 文件夹, 重启 软件即可以恢复

创建:用于创建对应的反射和传输测量模式的参数校准数据,后文有专门 的详细说明

Load: 用于导入之前保护的相应的校准数据(针对的是校准数据)

导入:将其他保存方式的校准数据导入(针对的是校准数据)

导出:将校准数据导出到其他目录中(针对的是校准数据)

第15页,共38页

[导出] 包含以下几项内容(测试数据导出)

CSV: 导出 CSV 格式

JPEG: 导出 JPEG 格式

Pdf: 导出 Pdf 格式

S参数:导出 S 格式

S 参数收集器:对于测量后的 S 参数按需要导出相应数据,需要导出的 S 参数前点 ^{●●},不需要导出的 S 参数前点 ^{●●},包括 S11、S12、S21、S22 EXCEL:导出 EXCEL 格式

XML: 导出 XML 格式

ZPlots: 导出 ZPlots 格式

设置:导出数据相应参数设置,默认即可,无需设置

自动导出设置: 设置是否导出测试数据及导出文件名、目录、格式

[分析仪] 包含以下几项内容

设置:设置连接当前设备的类型及对应串口编号

信息:当设备连接正常时,可以设置当前设备的默认校准步数(默认 2000 点),其它参数,请用默认值(不要随意修改),本对话框中的参数设置有 误,可以点默认--0K--关闭软件--重启软件即可

重新连接:将重建设备与 PC 的连接,相当于本菜单栏的[设置]

单次扫描:连接好测量件并设置好所有测试参数后,执行单次测量

重复扫描: 需先做一次单次扫描后才能执行, 用于现场调测

第16页,共38页

[预置] 包含以下几项内容

加载:加载预设参数,不使用

保存:保存预设参数,不使用

工具栏图标功能:将鼠标移动相应图标上方,会显示对应的功能,下面介 绍一下以下三种功能(其它功能见菜单中的子项描述)

. 打开史密斯图标,用史密斯圆图显示正向反射 S11 的测试结果

上 打开加载 XML 参考数据对话框,比如上一次测量结束后导出 XML 格式的数据,再次测试完成后,加载该 XML 数据(旧数据会出现在对话中的列表中,也可以改变文件止录进行查找),即可以对前后数据进行比对

正:端口延长参数设定,通常用于在设备与目标测量器件的反射(S11)测量,设备和器件(例如 PCB 板)间有延伸电缆(该电缆应该是射频 50 欧相对低损耗电缆),且电缆一头可以直接接到 miniVNA PRO Lite 的 DUT 口,电缆另一头例如需焊到 PCB 板上(包括电缆的地线也要焊接),可在此对话框中录入电缆的速度因子和长度,即在标准的反射校准后(见说明书中反射校准说明),用本操作去除连接电缆的造成的测量误差(电缆要控制在几厘米至十厘米左右,当然越短超好,频率越高或电缆越长误差越大),电缆长度的测量可以在菜单栏中[工具]-[电缆长度]中进行测量(包括速度因子测量),建议电缆的型号和速度因子让电缆供应商提供。注:本操作目前仅供用户试用,不保证测试结果的完全正确性!

名称	内容	RL (dB) 🔷 🔫	RP (°) 🚽
-none-	不显示数据	- none -	
RL	回波损耗(仅用于反射测量)	RI (4B)	- none -
RP	信号为反射测量相位	RP (°)	KL (dB)
TL	传输损耗(仅用于传输测量)	TI (4B)	RP (°)
TP	信号的传输测量的相位	TP (")	TL (dB) mp (B)
SWR	驻波比	SMB	IF ()
RSS	发射传感器的绝对值(目前不支持)	BSS (dBm)	DEE (JDT) DIE
Rs	Rs 串联等效阻抗	Bs (Obm)	$R_{\rm S}$ (0 $h_{\rm R}$)
Theta	相位角度	Theta (°)	Theta (°)
Tgr	时延	Ter (ns)	Ter (ns)
Xs	XS 串联等效电抗	Xs (Ohm)	Xs (Ohm)
Z	Z 复阻抗	[Z] (Ohm)	Z (Ohm)

软件主界面常用参数对照表(可下拉选择)

软件主界面开始和结束频率设定(软件右上角)

用户需结合目标测试器件的的特性和使用经验值,在开始和结束频率 中输入要测试的频率,miniVNA PRO Lite 最小开始频率为100K,结束最大 频率为200M,支持数字加 K/M/G 输入,一般不建议全频段扫描

软件主界面预置设定(软件右侧中部)

三个图标 🙆 💽 分别代表增加/删除/使用预置测试频率段;

增加预置测试频率段,在开始和结束频率中输入要设定的值,点增加 图标即可以增加;

鼠标点在已预设好的测试频率段,点删除图标即可删除;

鼠标点在已预设好的测试频率段,点使用图标即可开始进行单次扫描

第18页,共38页

软件主界面模式选择(软件右下方)

两个测量模式选择 传输(S21)

反射(S11)

莫式 ————	
反射	•
传输	
反射	

软件主界面单次扫描和重复扫描(软件右下角)□^{■実扫描} ^{单次扫描} 单次扫描: 连接好测量件并设置好所有测试参数后,执行单次测量, **重复扫描:** 需先做一次单次扫描后才能勾选执行,用于现场调测

软件主面界面标记点设置:

M: 鼠标移动到测度结果曲线上,当前鼠标位置的对应测量数据(自动)

标记 1: 鼠标移动到测度结果曲线上,在用户需要的位置点击左键设置, 设置后可用鼠标滚轮移动

三角标:计算标记1和标记2数据的绝对差(自动)

标记2: 鼠标移动到测度结果曲线上,在用户需要的位置按住键盘Shift键并点击左键设置,设置后可按住键盘Shift键并用鼠标滚轮移动

标记3: 鼠标移动到测度结果曲线上, 在用户需要的位置按住键盘Ctrl键并 点击左键设置, 设置后可按住键盘Ctrl键并用鼠标滚轮移动

标记4: 鼠标移动到测度结果曲线上, 在用户需要的位置按住键盘

Shift+Ctrl键并点击左键设置,设置后可按住键盘Shift+Ctrl键并用鼠标 滚轮移动

需取消标记点时,在软件标记点表格区右侧的对应的勾(√)去掉即可

第19页,共38页

如下图中参数为例(图中对应的RL和RP参数有最大最小自动搜索功能,只 需用鼠标点一下对应标记参数中的RL或RP即可)

	频率(Hz)	RL (dB)	RP (°)	Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	SWR
м								
1	13,848,987	6.43	151.58	21.7	18.7	11.0	30.5	2.83:1 🗹 🗸 🙀
Δ	1,341,470	2.13	287.28	1.9	4.7	30.0	0.0	
2	12,507,517	-4.30	-135.69	23.6	14.0	-19.0	-53.6	4.12:1 ✓ √ _M [™] _{NE}
3	14,509,403	-5.93	118.32	33.4	21.5	25.6	50.0	3.04:1 ✓ √ _M [™] _{NE}
4	13,560,055	-6.31	168.08	18.2	17.6	4.6	14.6	2.87:1 ✓ √M [™] NE

在标记点参数表格的右侧,有两个 1 图标

点击 ,如下图(左)可以查看更多参数(图中参数是示例),包括带宽,带宽的开始、结束频率,带宽限幅[对应图中极限(dB)],Q值,C,L等参数,修改极限(dB)的数值可以查看不同带宽下的相关参数,如下图(右)

실 VNA - 枋	記点参数 [1]		(×	실 VNA - 枝	記点参数 [1]		_
	Low	标记	High			Low	标记	High
频率 (Hz)		13,848,987			频率 (Hz)	12,559,112	13,848,987	15,613,536
损耗 (dB)		-6.43			损耗 (dB)	-4.43	-6.43	-4.42
极限 (dB)	6				极限 (dB)	2.00		
带宽 (Hz)	0	Q:	0.0		带宽 (Hz)	3,054,424	Q:	4.0
C:	530.24 pF	L:	249.08 nH		C:	530.24 pF	L:	249.08 nH
Rs:	18.68Ω	Xs:	10.99Ω		Rs:	18.68Ω	Xs:	10.99Ω
Rp:	25.14Ω	Xp:	42.76Ω		Rp:	25.14Ω	Xp:	42.76Ω
模式					模式	峰值模式		
Use:) <u>R</u> L	◯Īſ	帮助		Use:	€ <u>RL</u>	◯ĪL	帮助

🕻 ,如下图所示,可以查看相应频率点和 SWR 值

第20页,共38页

八、设备校准及测试示例

校准是实现精确测量前必要的准备,能够帮助用户更精确的参数测量, miniVNA PRO Lite 矢量分析仪每一次测试前建议都做一下设备校准,对于 对数据要求不高时,可以使用上一次的校准数据。

SMA 校准件

注:上图三个校准件用户需另行购买(校准件的 SMA 接头为内螺内针),以上三个校准件,常用于反射(S11)校准。

注: 传输校准通常需要上图一根或两根 SMA 直通线(两端均为内螺内针,在 满足测试条件下,越短越好)和一个直通转接头(两端均为外螺内孔),当然 可能还需衰减器、其他 SMA 转接头),所有非目标测试件上的其它配件(其 它配件越少越好),均要加入到校准中做校准去除,常用于传输(S21)校 准,**上图中配件同样需用户自行购买。**

警告:测试有增益的器件很有可能对仪器造成伤害,因此测试放大器时务 必小心,需要级联跟放大器相近倍数的衰减器!

放大器测试请参考"miniVNA Tiny 3G 矢量网络分析仪说明书"

miniVNA PRO Lite 可以分别测量反射、传输两个模式,校准前需设置并测试好串口,在下图中选择反射、传输模式并校准(下图标记选择的地方选择相应的模式)。

TM VNA 版本3.1.9	- • •
文件 工具 校准 导出 分析仪 颈置	報助
🛳 (P) (2) 品 疑 市 🚥 (2) 🗮 📾 🔁 🖾 📾 📾 (2) 🥔	·U 🛠 📖
0.00 TTRI (H2)	100,000
108.00 118.00	155,555,055
700	
2.00 Start	Stop
30.00	
38.00	
70.00	
-194.00	
	择
新羅(Hz) RL (dB) RP (*) [2] (Ω) Rc (Ω) Xs (Ω) Theta SWR ##+	
	放大
	单次扫描
	-4 0 4 8
题行 0/1/1 • 100% 完成 REFL_miniVNA-pro/COM204 REFL_miniVNA-pro.cal	

反射测量(例如测天线)和传输测量(例如测滤波器、带通、放大器, 双工器等)

					Mode 2
开始频率 (Hz):	结束频率 (Hz):	#点数	#扫描次数		# 扫描次数 1
100,000	999,999	4000	1	.	#校准占数 2,000
1,000,000	9,999,999	4000	1	33	#12/EARSAX 2,000
10,000,000	29,999,999	10000	1	1993	
30 000 000	200 000 000	10000	1	-	
					J [

上图中,校准时有两个模式可以选择,默认 Mode2 (Mode1 是对某些频 段要求精准校准时使用, Mode1 的频率段和点数相应设定,请参看说明书 中的常见问题 2)。扫描次数大于等于 1,小于等于 10 (一般设为 1); 校 准点数要求大于等于 100 点,小于等于 20000 点(一般设为 2000~10000); 所设点数越多,次数越多,则校准时间越长;miniVNA PRO Lite 因为频率 较低,扫描的次数和点数都无需太多,点数和次数对测量精度的影响较小。 第22页,共38页

I、反射校准及测试示例(DUT 口,以13.56M 天线为例)

(反射校准需使用以上三个 SMA 校准件, SMA 接头为内螺内针)

在下图中先在右下角选择<mark>反射</mark>模式,再选择工具栏--校准--创建…

WM VNA 版本3.1.9	9									
文件 工具 👌	2推 导出 :	分析仪 预置								帮助
🔮 (p) 🕖	频率	2		ø						·II 🛠 📖
RL (dB)	<u>L</u> oad	ت 🗶 🖲							RP (°) 👻	频率
10.00	导入								180.00	开始 (Hz) 100,000
0.00	导出								144.00	结束 (Hz) 200,000,000
<u>-10.00</u>									108.00	预置 (Hz)
-20.00									72.00	Start Stop
-30.00									36.00	
-40.00	Diagramm								0.00	
-50.00									-36.00	
-60.00									-72.00	
70.00									-108.00	
-80.00									-144.00	(洗择)
-90.00									-180.00	
频率(Hz)		RL (dB)	RP (°)	Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	SWR		
м										模式
1									$\Box \sqrt{M_{M_{E}}}$	反射
Δ										放大
2										
3										速度: -8 -4 0 4 8
4										
创建一个新的校准	≝组…				miniVNA-pro		uncal.			

1. 选择上图创建…,如下图(三项的校准只需对应操作,无先后之分)

₩A VNA - 校准[反射]			X
开路	短路		谢环
1-1.00	1 1.00	1 1.00	1
-0.75	- 0.75	0.75	0.75
0.50 C		0.50 C	0.30 C
-0.25	- 0.25	-0.25	- 0.25
a do a 25 a 60 a 75 a 60	0.00 0.25 0.50 0.75 1.00	a	0
read 开路	read 短路	read 负载	0.00 0.25 0.50 0.75 1.00
DUT和 DET开路,开路校准件 (Open)连接到DUT口。	短路校准件(Short)连接到DUT 口。	50欧负载校准件(Load)连接 到DUT口。	read 闭环 -
O Mode 1		Mode 2	
开始频率 (Hz): 结束频率 (H	z): #点数 #扫描次数	# 扫描次数 1	
100,000 999,	999 4000 1 🔺	#校准占数 2000	
1,000,000 9,999,	999 4000 1	2,000	
10,000,000 29,999,	999 10000 1		
30 000 000 200 000			
	帮助	取消加载	保存更新

第23页,共38页

2. 设备 DUT 连接 OPEN 校准件,校准点数默认 2000,并点击上图的 read 开路,直至如下图(一般推荐用 2000~10000 点校准)

3. 设备 DUT 连接 SHORT 校准件,并点击上图的 read 短路,直至如下图

4. 设备 DUT 连接 LOAD 校准件,并点击上图的 read 负载,直至如下图 (LOAD 校准件在校准完成后,请不要取下)

注: 上图三个载校准曲线每一台都有区别, 上图仅供参考

5. 点击上图保存,弹出下图,左下角文件名可随意修改,并点右下角保存

VN	VNA - 保存校准数据[反射	4]					×
	名称	日期	注解	类型	模式	#点数	#次数
-							
2 2 2	之件名 <mark>:</mark> REFL_miniVNA-pro 主解:	o.cal	帮助	ļ	20消	e	存

6. 点击下图右下角更新

WM VNA - 校准[反射]			
开語 - 4000 - 400 - 4000 - 4000	「短路 10,000 10,000 - 6,000 - 6,0000 - 6,000 - 6,000 - 6,000 - 6,000 - 6,000 - 6,000 - 6,000 -	∮ 4 4 5 5 5 5 5 5 5 5	
● 0 00000 200000 read 开路 DUT和 DET开路,开路校准件 (Open) 连接到DUT口。	[●] <u>mmm</u> ^{2,300} read 短路 短路校准件(Short)连接到DUT □.	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 0.25 0.50 0.75 1.00 read 闭环 -
开始频率 (Hz): 结束频率 (H 100,000 999, 1,000,000 9,999, 10,000,000 29,999, 30,000,000 20,000,	z): <u>#点数</u> #扫描次数 999 4000 1 999 4000 1 999 10000 1 000 10000 1 ▼	<pre># 扫描次数 1 #校准点数 2,000</pre>	
运行 0/1/1 - 100% 完成	帮助	取消加裁加裁	保存

7. 现在可以开始使用反射测量,下面确认设备的反射测量校准是否正确,LOAD 校准件与 DUT 口正常连接,点击下图右下角单次扫描

_									
VNA 版本3.1.9									- • • ×
文件 工具 校准 导出 分	所仪 预置								帮助
🍰 🖤 🕗 🖶 👯 🖬 🔤	🗟 👳 📾 🔁	🗷 🖻 🖄	1						·U 🛠 🛄
								PD (9)	杨率
10.00	7 4 4							180.00	### (H+) 100.000
0.00								144.00	(HZ) 100,000
10.00								108.00	3H (H2) 200,000,000
10.00								100.00	预置 (Hz)
-20.00								72.00	Start Stop
-30.00								36.00	
-40.00								0.00	
								0.00	
-50.00								-36.00	
-60.00								-72.00	
-70.00								.108.00	
10.00								100.00	
-80.00								-144.00	
-90.00								-180.00	
1777777711	DL (ID)	DD (0)	171.00	D (0)	× (0)		C11/D		000
观型(HZ)	KL (dB)	RP (*)	2 (12)	KS (12)	XS (12)	Ineta	SWK	_	模式
1									is at ↓
								• M •	2008) 2014
2									
3									速度:
4									-8 -4 0 4 8
2,000 样品扫描 5s				miniVNA-pro/CO	DM204 20	000/0 RE	FL_miniVNA-pro.cal		

8. 扫描结束后如下图所示

注: 上图每一台都有区别,仅供参考(以下示例中的图例同样只供参考, 不再强调)

9. 点击上图中菜单栏下红色框中的史密斯图标 ,如下图所示,下图红色圈中有一个绿色的圆点(DUT 与 LOAD 连接则圆点在史密斯图的正中, DUT 与 SHORT 连接则圆点在史密斯图的左侧,DUT 与 OPEN 连接则圆点在 史密斯图的右侧),每一台的圆点粗细都有差异,图中圆点仅供参考(校 准件取下再连接扫出来的圆点会有差异,三个校准件只需对应操作,无 先后之分),检查圆点后关闭下图。

LOAD

OPEN

第27页,共38页

10. 将 LOAD 校准件从 DUT 取下, DUT 和 DET 不连接任何器件,点击软件主 界面右下角单次扫描,扫描结束后如下图(自动缩放先勾选上)

11. 取消软件主界面中的自动缩放,如下图(至此设备端口 DUT 的反射校准 确认正常)

第28页,共38页

12. 将目标天线接在 DUT 口(如果有馈线连接,校正时校正点应在馈线的末端,如果有其他延伸器件,校正点同样在延伸器件的末端)

13. 在软件主界面右上角的频率设定中设定对应频率,点右下角单次扫描, 扫描结束后再点史密斯图标,如下图

II、传输校准及测试示例(DUT 向 DET 正向传输,以滤波器为例)

注:上图两根 SMA 直通线(两端均为内螺内针,在满足测试条件下,越短越好) 和一个直通转接头(两端均为外螺内孔)。

1. 设备 DUT、DET 分别接上一根 SMA 直通线,其中 DUT 口相连的直通线的末端接一个直通转接头(示例连接方式仅供参考)

2. 在下图中先在右下角选择传输模式,再选择工具栏--校准--创建…

WM VNA 版本3.1.9					- • •
文件 工具 校准 导出 分析仪 预置					報助
	>				'll 🛠 🖩
				TP (°) 👻	频率
0.00 导入				0.00	开始 (Hz) 100,000
导出				0.99	结束 (Hz) 200,000,000
				0.00	预置 (Hz)
0.00				0.00	Start Stop
0.00				0.00	
0.00				0.00	
0.00				0.00	
0.0				0.00	
0.00				0.00	
0.00				0.00	
				0.00	(选择))
				0.00	
频率(Hz) RL (dB) RP (°)	Z (Ω) Rs (Ω)	Xs (Ω)	Theta	SWR	模式
1 13 890 263 -6 35 151 10	217 185	11.2	31.2	2861 🖬 🗸 🖏	传输
			51.2	2.00.1	放大
2					
3					
4				□ √ ⁿ ¹ ¹ ¹ ¹	-8 -4 0 4 8
创建一个新的校准组	miniVNA-pro	uncal.			

第30页,共38页

3. 选择上图创建…,如下图

₩MA VNA - 校准[传输]			
开路	短路		闭环
1	1 1.00	1 1.00	1
-0.75	-0.75	- 0.75	- 0.75
0.50 C	0.50 C		0.50 C
-0.25	- 0.25	- 0.25	-0.25
	0	0	0
read 开路	100 125 150 175 100 read 短路	100 125 150 175 100 read 奇裁	100 125 150 175 100 read 闭环
DUT和 DET开路,开路校准件 (Open)连接到DUT口。	-	- Tead (2,3%)	DUT 和 DET 用直通线相连。
○ Mode 1	z): #点数 #扫描次数 999 10000 2 ▲ 999 500 1 3 999 2000 2 ▲ 999 500 1 ▼	● Mode 2 # 扫描次数 1 #校准点数 10,000	
	帮助	取消加载	保存更新

4. 默认上图中的校准点数为 2000,并点击上图的 read 开路,直至如下图

^{(A} VNA - 校准[传输]			×
开路	[短路	∫ 闭环	
1	- - - - - - - - - - - - - -	1 100 100 100 100 - - - - - - - -	0 5 0 5 0
○ Mode 1 开始频率 (Hz): 结束频率 (H 100,000 999 1,000,000 9,999 10,000,000 29,999 30,000,000 200,000	iz): #点数 #扫描次数 ,999 4000 1 ,999 4000 1 ,999 10000 1 000 10000 1 ▼	 Mode 2 # 扫描次数 1 # 校准点数 2,000 	
	帮助	取消 加载 保存 更新	
运行 0/1/1 - 100% 完成			

注: 上图中开路校准曲线每一台都有区别,加入不同的配件测量时也不相同,上图仅供参考。

5. 将接在 DUT 和 DET 口上的直通线通过末端的直通头对接起来,

6. 点校准对话框中的 read 闭环,直至如下图(直通线校准完成后,请不 要取下或断开连接)

注: 上图中开路和闭环校准曲线每一台都有区别,加入不同的配件测量时 也不相同,上图仅供参考。 7. 点击上图保存,弹出下图,左下角文件名可随意修改,并点右下角保存

WMA VNA - 保存校准数据[代	[輸]						×
名称	日期	注解		类型	模式	#点数	#次数
REFL_miniVNA-pro.cal	2017-07-02 12:1			miniVNA p	REFL	2000	0
文件名: TRAN_miniVNA	-pro.cal		帮助	Ę	网消	保	存
注解:							

8. 点击下图右下角更新

9. 现在可以开始使用传输测量,下面确认设备的传输校准是否正确, 直通线保持 DUT 与 DET 连接,点击下图 右下角单次扫描

Win VNA 版本3.1.9					- • •
文件 工具 校准 导出 分析仪 预置					帮助
🍰 🖤 🕗 🔒 🌿 🟥 🚥 😂 🚃 📾 🔁 🐼 📓 🖀 🖉					'll 🛠 🖩
TL (dB) 💗 🗹 自动缩放 🛞 🗽 🚺				TP (°)	频率
10.00				180.00	开始 (Hz)100,000
0.00				144.00	结束 (Hz)200,000,000
-10.00				108.00	· 预置 (Hz)
-20.00				72.00	Start Stop
-30.00				36.00	
-40.00				0.00	
-50.00				-36.00	
-00.00				.72.00	
				12.00	
-70.00				-108.00	
-80.00				-144.00	
-90.00				-180.00	
频率(Hz) TL (dB) TP (°) Z (Ω)	Rs (Ω)	Xs (Ω)	Theta	τgr (ns)	
M					模式
1					传输 ▼
					放大
2					
					速度:
4					-0 -4 0 4 8
	miniVNA-pro/COM	204 2000,	/0 TF	RAN_miniVNA-pro.cal	

10. 扫描结束后如下图所示

11. 取消软件主界面中的自动缩放,如下图(至此设备的传输校准确认正常)

12. 将低通滤波器分别接到 DUT 和 DET 之间

13. 在软件主界面右上角的频率设定中设定对应频率,点右下角单次扫描, 扫描结束后再将右列参数 TP(°)关闭,分别如下图对应显示。

警告:测试有增益的器件很有可能对仪器造成伤害,因此测试放大器时务

必小心,需要级联跟放大器相近倍数的衰减器!

第35页,共38页

常见问题 1: 用户安装 JAVA 后, 执行 vna. 3. 1. 9. cn. jar 时出现文件解压缩

用户可以用鼠标右键选择 vna. 3. 1. 9. cn. jar, 在弹出的对话框中点选--打 开方式--Java(TM) Platform SE binary, 如果此方法不能解决,请在 vna. 3. 1. 9. cn. jar 所在文件夹中点右键--新建--文本文档(注意:此文件夹路 径不能包含中文字符,本问题情况下 vna. 3. 1. 9. cn. jar 也不能直接放在桌面上, 因为桌面上的文件的路径同样包含中文),将以下红色英文内容拷贝到文本文档 并保存,保存并修改文件名和后缀(例如:将新建文本文档.txt 改为 vna. 3. 1. 9. cn. cmd,注后缀一定要改为.cmd),然后执行 vna. 3. 1. 9. cn. cmd。 @echo off if not exist vna. 3. 1. 9. cn. jar goto err1

java -Duser.home=./ -Duser.language=en -Duser.region=US -jar

vna. 3. 1. 9. cn. jar

goto end

:err1

echo !!! -----

echo !!! program file vna. 3. 1. 9. cn. jar missing

echo !!! aborting

pause

goto end

:end

注:以上内容中 vna. 3. 1. 9. cn. jar 为软件版本,如果你的版本为 vna. 3. 1. 8. jar 请将以上英文中三处 vna. 3. 1. 9. cn. jar 改为 vna. 3. 1. 8. jar (其它版本类推)。

第36页,共38页

常见问题 2: Model 的频率段和点数如何设定

打开目录 C:\用户\Admininstrator\vna. 3.1\ presets,打开文件 CalRanges_miniVNA-pro.txt(建议先备份此文件),内容如下红色参数表, 建议用户只修改扫描点数和扫描次数,修改完后保存,重启 vna. 3.1.9. cn. jar 即可(每个频段的扫描次数大于等于1,小于等于10;校 准点数要求大于等于100点,小于等于20000点)。

开始频率(Hz) 结束频率(Hz) 扫描点数 扫描次数

100000	999999	4000	1
1000000	9999999	4000	1
1000000	29999999	10000	1
3000000	20000000	10000	1

常见问题 3: 软件中有些参数修改了,无法修复如何处理

关闭软件,打开目录 C:\用户\Admininstrator,找到文件夹 vna. 3.1, 直接删除 vna. 3.1 文件夹(文件夹中的导出文件、校准数据等可以根据用 户需要另行保存),然后再运行软件,即可以重新生成 vna. 3.1 文件夹,内 部的配置数据全部重新生成(vna3. 2.X 以上版本的文件夹为 vna. 3.2)。 注意事项:

注1:对精度要求较高时,每一次设备上电后都建议做相应模式校准,并在 设备上电5~15分钟后再进行校准,避免温度变化造成测量精度的误差。

注 2: 由于设备的 USB 电流较大,建议台式 PC 使用时,将 USB 线连在主板 上的 USB 口,增加 USB 供电的可靠性。

注 3. 由于设备的 USB 口要求连接稳定,尽量选用 PC 的一个固定的或不常用的 USB 口作为 minVNA PRO Lite 的接口。